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Abstract

This paper addresses the problem of deformable surface
tracking from monocular images. Specifically, we propose
a graph-based approach that effectively explores the struc-
ture information of the surface to enhance tracking perfor-
mance. Our approach solves simultaneously for feature cor-
respondence, outlier rejection and shape reconstruction by
optimizing a single objective function, which is defined by
means of pairwise projection errors between graph struc-
tures instead of unary projection errors between matched
points. Furthermore, an efficient matching algorithm is de-
veloped based on soft matching relaxation. For evaluation,
our approach is extensively compared to state-of-the-art al-
gorithms on a standard dataset of occluded surfaces, as well
as a newly compiled dataset of different surfaces with rich,
weak or repetitive texture. Experimental results reveal that
our approach achieves robust tracking results for surfaces
with different types of texture, and outperforms other algo-
rithms in both accuracy and efficiency.

1. Introduction
This paper addresses the problem of tracking a generic

deformable surface with a known initial 3D shape, namely
template, and recovering its 3D shape in a video sequence
under monocular perspective projection. The template
could be provided manually in advance or computed from a
few video frames using shape-from-motion [1, 27].

Popular approaches to deformable surface tracking can
be roughly classified as dense approaches (e.g. [12, 25, 31,
48]) or feature-based ones (e.g. [4,9,24,34]). Dense approa-
ches directly use pixel appearance without extracting fea-
tures, and optimize a similarity measure between a tem-
plate and a captured image. This type of approaches is
usually guided by the brightness consistency assumption,
and thus suffers from illumination change, partial occlusion
and motion blur. Besides, most of them cost much com-
putational time due to the large parameter space. Feature-

based approaches perform shape reconstruction based on
point correspondences between the template and an input
image. Once point correspondences can be established,
many shape-from-template approaches [4, 7, 9, 22, 24, 34]
can reconstruct the 3D shape in the input image. These me-
thods rely on the quality of the correspondences, and most
of them establish correspondences based solely on local ap-
pearance without sufficient consideration of the spatial re-
lationships among the feature points and the constraints im-
posed. Therefore, they often fail if the texture quality is
too poor to guarantee reliable correspondences, as happens
in the presence of repetitive patterns, dramatic deformation
between the template and the input image, and environmen-
tal perturbations such as illumination change.

To obtain high quality correspondences between two
images, graph-based methods [13,42,49] are widely used by
constructing graphs that encode the geometric relationships
between feature points and then accomplishing correspon-
dences by means of graph matching. However, these graph-
based methods suffer from several shortages when applied
to deformable surface tracking. Firstly, graph matching
amounts to an NP-hard binary programming problem, and
many graph matching algorithms [47, 49] may take several
minutes to process a few hundred points despite some ap-
proximation strategies are employed. It is therefore diffi-
cult to use them directly in 3D shape reconstruction where
thousands of reliable correspondences are usually required
to compute an accurate 3D shape. Secondly, these graph-
based methods are independent of subsequent steps of out-
lier rejection and shape reconstruction, which may hurt the
accuracy of the reconstructed shape due to lack of informa-
tion about the deformation model.

Addressing the issues discussed above, we propose a no-
vel graph-based method to deformable surface reconstruc-
tion and tracking. Different from traditional methods that
usually treat separately feature correspondence, outlier re-
jection and shape reconstruction, we integrate these pro-
cedures into a unified graph-based framework, and pro-
pose to solve optimizations of correspondence and defor-
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mation iteratively. Considering computational efficiency,
we relax the hard matching constraint in the conventional
graph matching problem to soft matching constraint. Such
soft relaxation allows us to maintain more matching details
that result in more accurate shape, and also benefits greatly
to the computational efficiency through a novel matching
algorithm developed under the soft matching constraint.
Accompanied with a well-designed strategy for candidate
match filtering, our graph-based approach is able to process
thousands of points in a few seconds, which is much faster
than conventional graph-based algorithms.

For a thorough evaluation, we compare our approach
with several recently proposed approaches [8,24,25] on two
datasets: the tracking surface with occlusion (TSO) bench-
mark [25] containing two video sequences in presence of
occlusions, and a newly collected dataset1 containing 11
sequences involving different surfaces with rich, weak or
repetitive texture under significant deformation. On all se-
quences our approach produces the best or nearly the best
tracking results. Regarding the computational efficiency, it
also outperforms the compared algorithms in general.

In summary, our contribution lies in the new graph-based
approach for deformable surface tracking in three aspects:
(1) we introduce graph model and graph matching into de-
formable surface tracking by a soft matching relaxation and
a well-designed strategy of candidate match filtering; (2) we
design a unified optimization framework to explore full in-
formation about local appearance, spatial relationship and
deformation model to acquire accurate shape reconstruc-
tion; and (3) we construct a new real world dataset with
annotation for evaluating deformable surface tracking algo-
rithms in the context of different types of textures.

2. Related Work
Recovering the nonrigid shape of a surface from input

images usually includes three steps: keypoint correspon-
dence, outlier rejection, and shape reconstruction. In the
following we sample some classical studies or related ones
that inspire our study on deformable surface tracking.

Keypoint correspondence refers to extracting keypoints
from given images and subsequently relating them by some
distance metric to keypoints in a nearest-neighbour fash-
ion. Some popular keypoint detectors and descriptors (e.g.
SIFT [21] and SURF [5]) are designed to be robust ag-
ainst changes in scale and rotation.Aiming at real-time sys-
tems, several extremely fast keypoint detectors and binary
descriptors [20, 30] were developed as well. A simple way
to establish correspondence between extracted keypoints is
to assign each point to the point with the closest descrip-
tor. This naive approach suffers from both intrinsic distur-
bance (e.g. repetitive patterns) and extrinsic variation (e.g.

1There is a serious lack of deformable tracking benchmarks due to diffi-
culty in groundtruth annotation, the new dataset is collected for this reason.

lighting change). In order to improve the robustness ag-
ainst such perturbations, some approaches [42, 46, 49] con-
struct graphs to encode the geometric relationship between
keypoints, and reformulate keypoint correspondence as a
graph matching problem. Solving graph matching amounts
to an NP-hard binary programming problem, and approx-
imate solutions [19, 47] are commonly applied to finding
efficient and tight relaxations.

Outlier rejection works by fitting a deformable model us-
ing the established correspondences and eliminating incor-
rect ones that conflict with the fitted model. Existing me-
thods of outlier detection can be roughly categorized into
3D methods and 2D methods, which use 3D and 2D de-
formable models respectively. The main advantage of 3D
methods [11, 26, 32, 38] lies in that they can use physically
meaningful properties, e.g. isometry, which are invariant to
changes of the camera viewpoint or camera parameters. On
the contrary, 2D methods [28, 29, 43] cannot exploit sur-
face isometry without involving 3D constraints, and are thus
necessary to impose some general assumptions on the 2D-
2D flowfield. Usually, these methods assume the flowfield
is globally or piecewise smooth.

Shape reconstruction estimates the nonrigid shape of the
surface based on the known template and the established
keypoint correspondence. Such correspondence between
the template and the input image allows one to compute
a 2D warp and then infer a 3D shape in closed form [3].
However, the 2D warp does not take the 3D constraints into
account, and thus may hurt the accuracy of the recovered
shape. Alternatively, recent methods tend to compute di-
rectly from correspondences to 3D shape, which result in
solving degenerate linear systems [33]. To handle this ill-
conditioned problem, a large number of methods employ di-
mensionality reduction techniques, such as principal com-
ponent analysis (PCA) [6, 14, 16], free form deformations
(FFD) [7], model analysis [22, 23] and Laplacian forma-
lism [24, 41], to reduce the degree of freedom. In addi-
tion to dimensionality reduction, another popular way is
to impose some additional constraints to make the prob-
lem well-posed. Isometry constraints [2, 8, 9, 22] that in-
volve preserving geodesic distances as the surface deforms
or inextensibility constraints [7, 15, 24, 34, 39, 45] that pre-
vent Euclidean distances between neighboring points from
growing beyond a bound are commonly enforced in recent
approaches. In particular, conformal deformation (angle-
preserving) [4] relaxed from isometric deformation makes
it applicable to some types of extensible surfaces.

Different from the above mentioned algorithms that treat
keypoint correspondence, outlier rejection and shape recon-
struction as separate steps, a few investigations have been
devoted to solving simultaneously these problems by opti-
mizing a single objective function. Examples include [38]
that formulates these problems jointly in a mixed integer
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quadratic form, and [37] that reduces the complexity of the
joint optimization problem by using weak pose and shape
priors, and [40] that encodes 3D shape reconstruction into
an end-to-end deep neural network.

Our approach shares similarity with above algorithms in
the use of geometric context to assist surface tracking, but
differs in the context model (i.e. with graph matching). In
particular, our work falls into the group of structure-aware
tracking, with improvement in two-folds: (1) modeling key-
point correspondence and shape reconstruction in line with
pairwise projection errors between graph structures, instead
of conventional unary projection errors between keypoint
sets, and (2) developing an efficient graph matching algo-
rithm under soft matching relaxation. Our approach aims to
provide accurate and efficient tracking for deformable sur-
faces, as validated in the experiments.

3. The proposed method

We represent a known template shape T as a triangulated
mesh of Nv vertices {vri = [xi, yi, zi]

T , 1 ≤ i ≤ Nv} con-
nected by a set Emesh of Ne edges. We stack the vertices
into a vector xr ∈ R3Nv , which is described in the camera
reference frame. The known template T is related to the un-
known deformed shape S by an unknown 3D continuously
differentiable deformation ψ : R3 → R3, i.e., ψ maps a
point in T to the corresponding point in S. Similarly, we
can represent S using Nv vertices vi with unknown 3D co-
ordinates and stack them into a vector x ∈ R3Nv , which is
to be solved in our algorithm. We assume that the camera
is calibrated, with known intrinsic and extrinsic parameters.
That is, we have a known projection function τ : R3 → R2

maps each 3D mesh point to a 2D image point.
Let P r = {pri }mi=1 and P = {pi}ni=1 be the two fea-

ture sets extracted from the reference and input images, re-
spectively. For each feature point pri ∈ P r or pj ∈ P ,
we also use the same symbol to indicate its homogeneous
coordinates in the 2D image for simplicity. Since the 3D
surface for the reference image is known, for each feature
point pri ∈ P r we can compute its 3D mesh point pri ∈ R3.

The correspondences between points in P r and P are
represented by a matrix C ∈ Rm×n in which each element
Ci,j ∈ [0, 1] indicates the probability of assigning pri to pj .
Note that we use soft correspondences here rather than hard
ones that are commonly adopted in previous approaches.
Soft correspondences allow us to maintain more correspon-
dence details, and thus improve the accuracy of the recov-
ered 3D shape. Another benefit brought by it lies in that the
subsequent quadratic programming problem becomes much
easier to be solved by dropping the discrete constraints.

The optimal shape S to be reconstructed can be obtained
by solving simultaneously for bothC andψ that minimizing
a cost function E(C,ψ):

(C∗, ψ∗) = arg min
C,ψ
E(C,ψ),

s.t.

{
C < 0m×n, C1n 4 1m, C

T1m 4 1n,
‖ψ(pri )− ψ(prj)‖2 ≤ li,j ,∀(i, j) ∈ Emesh,

(1)

where 0m×n denotes a matrix of m × n zeros, 1n denotes
a column vector of n ones, < (4) are element-wise ≥ (≤),
and li,j represents the constraint of the geodesic distance
between points pri and prj . The constrains on correspon-
dence C guarantee that each point can be matched at most
once, while those on deformation ψ are inextensibility con-
straints that prevent Euclidean distances between neighbor-
ing vertices from growing beyond a bound.

In previous approaches, the cost function E(C,ψ) is usu-
ally defined to accumulate the projection error of each cor-
respondence 〈pri , pj〉 under deformation ψ. In this paper,
we propose a graph-based measure that assembles the pro-
jection errors between graph structures as

E(C,ψ) =
∑
i,j

∑
a,b

d(ψ, i, j, a, b)Ci,aCj,b, (2)

where d(ψ, i, j, a, b) is cost function measuring the pairwise
inconsistence between edges (pri ,prj) and (pa, pj) under de-
formation ψ. We define d as combination of an appearance
inconsistence function dapp and a geometric inconsistence
function dgeo, which are specified as

dapp(i, j, a, b) = ‖fri − fa‖2 + ‖frj − fb‖2,
dgeo(ψ, i, j, a, b) = ‖(τ(ψ(pri ))−τ(ψ(prj)))− (pa−pb)‖2,
d(ψ, i, j, a, b) = (1−α)dapp(i, j, a, b)+αdgeo(ψ, i, j, a, b),

(3)

where fri and fa are photometric descriptors of feature
points pri and pa respectively, and α ∈ [0, 1] balances be-
tween local features and graph structures used for shape re-
construction.

For conciseness we can reformulate Eq. (2) in a pairwise
compatibility form

E(C,ψ) = cTK(ψ)c, (4)

where c .
= vec(C) is the vectorized version of matrixC and

K(ψ) ∈ Rmn×mn is the corresponding affinity matrix:

Kind(i,a),ind(j,b)(ψ) = d(ψ, i, j, a, b)− κ, (5)

where (i, a) denotes a candidate match from point pri in the
reference image to point pa in the input image, and ind(·) is
a bijection that maps a vertex correspondence to an integer
index. Note that κ is chosen to be sufficiently large to ensure
that K(ψ) is nonpositive, of which the purpose is to avoid
the trivial solution in which no correspondence is activated.

To filter outlier correspondences with large projection
errors under deformation ψ, we penalize matched points
by means of projection error term which increases as more
points are matched

E(C,ψ) = cTK(ψ)c + λcT e(ψ), (6)
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where λ > 0 adaptively controls the degree of outlier rejec-
tion, and e(ψ) ∈ Rmn encodes the unary projection error of
each point correspondence as

eind(i,a)(ψ) = ‖τ(ψ(pri ))− pa‖2. (7)

4. Optimization
For each incoming frame, we first predict c and ψ using

the solutions from previous frames, and then refine them
alternatively and iteratively.

4.1. Optimization of correspondence

Given a deformation ψ, problem (1) is reduced to solving
for an optimal correspondence as

c∗ = arg min
c

cTK(ψ)c + λcT e(ψ),

s.t. c < 0mn, Bc 4 1m+n,
(8)

where Bc 4 1m+n encodes the one-to-one matching con-
straints (refer to [47] for details on constructing matrix B).

Problem (8) can be viewed as a relaxed graph matching
problem by dropping the discrete constraints and adding a
penalization term. Some power iteration algorithms [10,19]
for classical graph matching can be extended to solve for
a soft correspondence c, but it is hard apply them for (8)
due to the penalization term. In this section, we propose
an approach based on the Frank-Wolfe algorithm [17] for
minimizing problem (8) with respect to correspondence c,
which is described in Algorithm 1.

4.2. Optimization of deformation

Given a correspondence c (i.e., matrixC in (1)), problem
(1) is reduced to solving for an optimal deformation as

ψ∗ = arg min
ψ

{∑
i,j

∑
a,b

dgeo(ψ, i, j, a, b)Ci,aCj,b

+λ
∑
i,a

eind(i,a)(ψ)Ci,a

}
,

s.t. ‖ψ(pri )− ψ(prj)‖2 ≤ li,j ,∀(i, j) ∈ Emesh.

(9)

We relax the first term of problem (9) by

dgeo(ψ, i, j, a, b)=‖(τ(ψ(pri ))−τ(ψ(prj)))− (pa − pb)‖2
≤ ‖(τ(ψ(pri ))− pa‖2 + ‖τ(ψ(prj))− pb‖2.

Problem (9) is thus relaxed as a linear fitting

ψ∗ = arg min
ψ

∑
i,a

ωi,a‖(τ(ψ(pri ))− pa‖2,

s.t. ‖ψ(pri )− ψ(prj)‖2 ≤ li,j ,∀(i, j) ∈ Emesh,

(10)

Algorithm 1 Frank-Wolfe for correspondence c
% ψ0: given a deformation.
% Ω: solution space of feasible c.

1: Initialization: compute matrixK(ψ0) and vector e(ψ0).
2: Initialization: initialize correspondence c as trivial.
3: while c not converged do
4: g = 2K(ψ0)c + e(ψ0) % gradient
5: y = arg miny gT y, s.t. y ∈ Ω
6: β = arg minβ Eλ(c + β(y− c)), s.t. 0 ≤ β ≤ 1
7: c← c + β(y− c)
8: end while
9: return c

where ωi,a = Ci,a(
∑
j Cj,a +

∑
b Ci,b) + λ is the weight

for each sample.
As described in [24], this problem can be further refor-

mulated to a well-conditioned linear system with respect to
the coordinates of the mesh vertices as

x∗ = arg min
x
‖Mx‖22 + r‖Ax‖22, s.t. ‖x‖2 = 1, (11)

where M is a coefficient matrix, A a regularization matrix,
and r a scalar coefficient defining how much we regular-
ize the solution. More details about this conditioned linear
system can be found in [24].

5. Implementation details
5.1. Graph construction

An undirected graph of n vertices can be represented by
G = (V,E), where V = {v1, . . . , vn} and E ⊆ V× V de-
note the vertex and edge sets, respectively. Given the initial
region R of the surface of interest in the reference image,
we construct a model graph Gr for the surface as follows.

Vertex generation. It is common to extract keypoints
from the image to represent local parts, and then model
them as vertices of the graph. Many approaches obtain the
keypoints as local extremes of cross-scale DoG images, e.g.
SIFT. However, the number of the keypoints extracted using
such methods may vary drastically depending on detectors
and frame content. Moreover, they are often sensitive to
environmental variations, such as illumination changes and
motion blurs, and thus hurt the tracking accuracy.

We adopt a more robust and flexible way to address these
issues. We first divide R evenly into N grids, and compute
the SIFT response for each pixel in each grid. After that, we
select the keypoint with maximum response from each grid,
and treat such keypoints as graph vertices. Specifically, for
vertex generation of a nonrectangular shape, we first divide
its minimum bounding rectangle into even grids and extract
a candidate vertex from each grid, and then remove invalid
vertices lying outside the shape. Finally, the SIFT descrip-
tors of these keypoints are recorded as vertex attributes.
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Edge generation. There are several widely-used me-
thods for edge generation, including the fully connected
graph, the ε-neighborhood graph and the k-nearest neighbor
graph. The fully connected graph suffers from high compu-
tational complexity and is thus not suitable for graphs with
large size. Meanwhile, the ε-neighborhood graph is sensi-
tive to the selected parameter ε, and suffers from the scale
changes of the object. Instead, we adopt Delaunay triangu-
lation [18] for edge generation so as to build stable graph
structures invariant to scaling, translation and rotation.

For each incoming frame t, we construct a candidate
graph Gt in the same way, and then formulate the feature
correspondence problem by means of graph matching.

5.2. Candidate match filtering

There are N vertices in both model graph Gr and can-
didate graph Gt, and thus in total N2 candidate matches
between vertices of Gr and Gt. The size of the affinity ma-
trixK(ψ) is, therefore, as large asN4, which results in high
costs in not only storage space but also computational time.

In order to improve the computational efficiency, we re-
duce the size of K(ψ) by filtering candidate matches under
a reasonable continuity assumption. In particular, unreliable
matches that cause leaps between consecutive frames are
eliminated from the candidate match set. For an incoming
frame t, we construct a candidate match set for each vertex
vri ∈ Vr by applying geometric and photometric constraints

Dt
i={(i, a)|‖pta − τ(ψt−1(pri ))‖2 ≤ εg, cos(fri , f

t
a) ≥ εa},

where εg and εa are tolerances of geometric and appearance
changes respectively. We further remove redundant matches
from Dt

i and keep at most nc matches with maximum ap-
pearance similarity. The final set of candidate matches Dt

is constructed by combining candidate match sets over all
vertices Dt = ∪iDt

i .
The constructed Dt is then used to condense the affinity

matrix K(ψ) by removing the corresponding row and col-
umn for each (i, a) /∈ Dt. The size of the affinity matrix
K(ψ) is thus reduced to n2cN

2 at most. We set empirically
εg = 20, εa = 0.6 and nc = 5 throughout our experiments.

5.3. Self-adaptive outlier rejection

Our approach fuses keypoint correspondence, outlier re-
jection and shape deformation into a unified optimization
framework as Eq. (6) that drives outlier rejection through
the penalization item λcT e(ψ), where λ > 0 controls the
degree of outlier rejection. It is usually hard to choose a
proper λ for outlier rejection in practice. A too small λ can-
not get the effect of denoising, while a too large one may
reject many correct correspondences as outliers.

To address this issue, we propose to use self-adaptive
outlier rejection by adjusting λ in line with affinity matrix

campus cobble scene

newspaper1 newspaper2 cushion1

(a) well textured surfaces
brick cloth cushion2

(b) repetitively textured surfaces
stone sunset

(c) weakly texture
Figure 1. The proposed DeSurT dataset of surfaces with (a) well
textured, (b) repetitive textured, and (c) weakly textured.

K(ψ) and project error e(ψ) as

λ =
N
∑
i,j |Ki,j(ψ)|

|Dt|
∑
i ei(ψ)

, (12)

where |Dt| denotes the size of the candidate match set
Dt. The motivation of this self-adaptive strategy is that we
choose a proper λ to avoid either of the two items in Eq. (6)
dominating the optimization.

6. Experiments
Our experiments consist of two parts. The first one

(Sec. 6.2) studies how the graph size affects tracking ac-
curacy and computational time of the proposed algorithm.
The second one (Sec. 6.3) compares the proposed algorithm
with state-of-the-arts on two benchmarks.

6.1. The proposed benchmark

Recently, several datasets [25, 32, 35, 36, 44] have been
provided for evaluating deformable surface tracking. How-
ever, most of them lack of annotated ground-truth mesh ver-
tices. Furthermore, these datasets are collected with limited
types of surfaces and may be insufficient to evaluate the ef-
fectiveness of deformable surface tracking algorithms.

For a thorough evaluation of the proposed algorithm in
comparison with the baseline algorithms, we collect a new
dataset and name it Deformable Surface Tracking (DeSurT).
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tracking error computational time

(a) the curves with respect to N

(b) the curves with respect to α
Figure 2. Tracking error and computational time of our algorithm
with respect to (a) keypoint number N , and (b) balance factor α.

DeSurt is collected using a Kinect camera to evaluate track-
ing performance under various deformations and lighting
conditions. It consists of 11 video streams and 3,361 frames
showing various deformations of different types of surfaces,
including seven printed pictures with different contents, two
newspapers and two cushions. As illustrated in Fig. 1, these
surfaces are roughly categorized into three classes: well-
textured (campus, cobble, scene, newspaper1, newspaper2
and cushion1), repetitively textured (brick, cloth and cush-
ion2), and weakly textured (stone and sunset).

To evaluate the reconstruction accuracy, we use the
Kinect point cloud to build ground truth meshes, and com-
pute the average vertex-to-vertex distance (as that in [25])
from the reconstructed mesh to the ground truth mesh.
Therefore, in addition to the depth information of each
frame, all videos come with manually annotated ground-
truth mesh vertices (130 vertices for printed pictures and
newspapers, and 121 vertices for cushions) across frames.

To test the robustness of the proposed algorithm against
occlusion, we also report results on a public dataset, track-
ing surface with occlusion (TSO) [25], which comprises
two video streams displaying well and poorly textured de-
formable surfaces respectively with a total of 394 frames, in
presence of both artificial and realistic occlusions.

6.2. Parameter analysis

The parameter N described in Sec. 5.1 decides the num-
ber of extracted keypoints and hence the size of the graphs.
It is the most crucial parameter in the proposed algorithm

Table 1. Comparison in the average tracking error (mm). The best
result for each row is in bold.

video
FSD LM LLS DIR TDA JRR ours (#N)
[29] [24] [8] [25] [48] [31] 1000 2000

D
eS

ur
T

campus 27.36 35.51 38.41 35.27 48.68 48.59 28.05 22.02
brick 31.05 31.24 37.28 37.33 54.75 55.07 33.82 27.61
scene 29.19 30.35 27.65 32.81 69.93 73.56 24.08 22.19
cloth 298.5 247.2 361.7 175.9 92.58 98.74 71.29 47.17

cobble 23.82 25.97 33.06 266.5 74.57 76.80 24.45 22.39
stone 254.8 361.8 310.9 77.18 129.9 118.3 42.20 36.09

sunset 85.8 117.1 94.69 44.08 76.17 74.30 51.60 30.93
news.1 26.04 33.55 65.35 27.15 58.42 60.94 26.94 23.05
news.2 32.99 34.15 45.39 76.34 55.73 55.78 28.84 25.93
cush.1 46.16 49.45 56.38 92.49 98.93 99.68 71.08 45.05
cush.2 172.0 136.2 203.2 99.18 77.20 75.91 43.73 40.26

AVG 93.43 100.2 115.8 87.65 76.07 76.15 40.55 31.15

T
SO

classrm 5.26 2.62 12.40 2.52 39.60 39.48 3.48 2.75
white 38.63 49.27 58.61 7.17 60.60 60.49 8.75 6.12
AVG 21.95 25.95 35.51 4.85 50.10 49.99 5.62 4.44

Table 2. Comparison in the average computational time (s).

video
FDS LM LLS DIR TDA JRR ours (#N)
[29] [24] [8] [25] [48] [31] 1000 2000

D
eS

ur
T

campus 13.81 2.46 12.96 13.67 8.12 44.73 1.02 4.20
brick 13.07 2.08 12.58 13.43 26.24 24.69 0.68 1.95
scene 13.77 2.45 12.87 11.69 14.77 18.30 0.80 3.12
cloth 9.34 2.88 13.24 14.28 8.99 8.61 1.27 6.46

cobble 13.75 2.77 14.90 18.47 23.01 21.60 2.37 10.39
stone 14.52 2.12 11.99 17.16 9.64 8.36 1.92 8.18

sunset 12.60 2.21 12.38 16.27 13.80 13.25 2.41 9.55
news.1 12.84 2.59 13.24 20.31 21.03 20.81 1.37 5.13
news.2 13.24 2.54 14.89 21.78 12.94 12.74 0.84 3.18
cush.1 12.68 2.42 12.59 16.07 7.31 7.90 1.18 3.08
cush.2 14.19 2.32 12.10 20.80 9.58 9.51 0.68 2.43

AVG 12.98 2.44 13.07 16.72 14.13 15.32 1.32 5.24

T
SO

classrm 18.06 3.69 12.38 22.06 6.53 6.23 1.11 4.02
white 12.24 1.68 12.20 52.59 24.83 24.75 1.39 4.32
AVG 15.16 2.69 12.29 37.33 15.68 15.49 1.25 4.17

and directly affects tracking accuracy and computational
time. In addition, α defined in Eq. 3 controls the degree
of structure information integrated into our algorithm. In
this section, we report the average tracking error and com-
putational time with respect to N and α respectively.

As shown in Fig. 2(a), the tracking error is reduced sig-
nificantly for all types of surfaces with increasing N when
N is smaller than 1500, and saturate afterwards. The com-
putational time is roughly quadratic in N because the size
of the affinity matrix K is quadratic in N .

Fig. 2(b) illustrates how our algorithm is influenced by
α, where α = 0 indicates sole local appearances being used
and α = 1 means integrating fully structure information. It
is shown that the tracking error is reduced remarkably for
surfaces with rich, weak or repetitive texture when we fuse
certain degrees of structure information (e.g. 0.3 ≤ α ≤
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Figure 3. Examples of surface with rich texture.

0.8). Meanwhile, occluded surfaces are less benefited from
the integrated structure information.

6.3. Comparison with state-of-the-art algorithms

In this section, we report experimental results of the pro-
posed algorithm in comparison with several state-of-the-art
baselines, including FSD [29], LM [24], LLS [8], DIR [25],
TDA [48] and JRR [31], of which the first three algorithms
are feature-based approaches and the last three ones are
dense approaches. For our algorithm we fix α = 0.7 for
all trials, and report two groups of results with N = 1000
and 2000 respectively.

As shown in Table 1, our algorithm is robust to different
types of surfaces with rich, weak or repetitive texture, and
outperforms all baseline algorithms significantly even when
relatively less keypoints (N = 1000) are extracted from
each surface. As for occluded surfaces (the TSO dataset),
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Figure 4. Examples of surface with weak texture.

DIR achieves satisfactory tracking results with the assis-
tance of a well-designed strategy for occlusion detection.
Interestingly, without any specified process for occluded
surfaces, our algorithm provides comparable results with
DIR on the TSO dataset, and outperforms other baseline
algorithms in general. When we rise N up to 2000, the
tracking accuracy of our algorithm is further improved re-
markably on all video sequences of both datasets.

Considering computational time (Table 2), the feature-
based methods (FSD, LM, LLS and ours) cost less than the
dense methods (DIR, TDA and JRR). In particular, our al-
gorithm beats not only the dense methods but also the com-
pared feature-based ones on both datasets with N = 1000.
When we increase the number of keypoints to 2000, our
algorithm needs more computational time and becomes
slower than LM, but it is still more efficient than other base-
line algorithms on both datasets.
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Figure 5. Examples of surface with repetitive texture.

Fig. 3 to Fig. 6 illustrate several representative samples
of various types of surfaces provided by the compared algo-
rithms. For well-textured surfaces (Fig. 3), TDA and JRR
fail to catch the object due to drastic deformation of the
surface, while other algorithms achieve reasonable track-
ing results. As illustrated in Figs. 4 and 5, all the com-
pared baseline algorithms suffer from weakly-textured and
repetitively-textured surfaces, but our algorithms is able to
provide accurate tracking results across frames. Further-
more, our algorithm, as well as DIR, is robust to partial oc-
clusion (Fig. 6), while other algorithms may fail to catch the
object in presence of some degree of occlusion.

7. Conclusion

In this paper, we proposed a novel graph-based approach
to deformable surface tracking aiming to improve the track-
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Figure 6. Examples of surface with occluded texture.

ing performance and efficiency. The proposed approach
solves for feature correspondence and shape recovery by
means of pairwise projection errors between graph struc-
tures, and employs soft matching relaxation to improve the
computational efficiency. Experimental results reveal that
our algorithm gains accurate and robust tracking perfor-
mance against various types of surfaces and outperforms re-
cent state-of-the-art algorithms in both accuracy and speed.
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